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1 Intro, definitions and notations

We are concerned with extremely the high-dimensional problem of many-particle (N ≳ 1023) Hamiltonian dynamics. How do
we reduce the complicated microscopic dynamics to the simpler evolution of macroscopic quantities?

Work with N particles in 3 dimensions. Suppose particle i has position qi = (qx1 , q
y
1 , q

z
1) and momentum pi = (px1 , p

y
1, p

z
1).

(On the blackboard, I use replace the boldfaced letter with the arrow version, i.e. qi → q⃗i.) Use the notation

Q ≡ (q1,q2, . . . ,qN ) , P ≡ (p1,p2, . . . ,pN ) , Γ ≡ (q1, . . . ,qN ,p1, . . . ,pN ) . (1)

Also make the definitions

qij ≡ qi − qj , qij ≡ |qij | , pi ≡ |pi| , dΓi ≡ d3qid
3pi . (2)

The particles evolve under Hamiltonian dynamics with the Hamiltonian

H(Q,P) =

N∑
i=1

[
p2i
2m

+ U(qi) +
1

2

∑
j ̸=i

V (qij)

]
≡ H1(Q,P) +

1

2

N∑
i=1

∑
j ̸=i

V (qij) . (3)

In particular, we consider a two-body interaction potential V (q) which is spherically symmetric, i.e. only depending on q
rather than q. Also define

Ui ≡ U(qi) , Vij ≡ V (qij) . (4)
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2 THE BBGKY HIERARCHY

We will use the Poisson bracket, which for operators A(Q,P) and B(Q,P) is defined as

{A,B} ≡
N∑
i=1

[
∂A

∂qi
· ∂B
∂pi

− ∂A

∂pi
· ∂B
∂qi

]
=

∂A

∂Q
· ∂B
∂P

− ∂A

∂P
· ∂B
∂Q

. (5)

It has the following properties (for operators A,B,C and scalar λ), which we will use:

{B,A} = −{A,B} (antisymmetry) (6)

{A,B + λC} = {A,B}+ λ{A,C} (bilinearity) (7)

{A+ λC,B} = {A,B}+ λ{C,B} (bilinearity) . (8)

The probability density over phase space ρ(Q,P; t) is the probability density of particles at phase space point (Q,P) at
time t. It evolves according to the Liouville equation, whose derivation proceeds as follows:

0 =
dρ

dt
(Liouville theorem) (9)

=
∂ρ

∂t
+ Q̇ · ∂ρ

∂Q
+ Ṗ · ∂ρ

∂P
=

∂ρ

∂t
+

∂H

∂P
· ∂ρ

∂Q
− ∂H

∂Q
· ∂ρ

∂P
=

∂ρ

∂t
+ {H, ρ} (10)

=
∂ρ

∂t
+ {H1, ρ}+

1

2

N∑
i=1

∑
j ̸=i

{Vij , ρ} (Bilinearity of Poisson bracket) . (11)

The last term can be re-written by re-indexing and using the symmetry of Vij = Vji:

1

2

N∑
i=1

∑
j ̸=i

{Vij , ρ} =
1

2

N∑
i=1

∑
j ̸=i

N∑
k=1

∂Vij

∂qk
· ∂ρ

∂pk
=

1

2

N∑
i=1

∑
j ̸=i

[
∂Vij

∂qi
· ∂ρ

∂pi
+

∂Vij

∂qj
· ∂ρ

∂pj

]
=

N∑
i=1

∂ρ

∂pi
·
∑
j ̸=i

∂Vij

∂qi
. (12)

Thus, we find the Liouville equation

∂ρ

∂t
+ {ρ,H1} =

N∑
i=1

∂ρ

∂pi
·
∑
j ̸=i

∂Vij

∂qi
(Liouville’s equation) (13)

The left-hand side includes the one-body effects, such as advection due to the P and the flows under U . The right-hand side
accounts for transfer of probability due to interactions. The Liouville equation is exact.

2 The BBGKY hierarchy

The Liouville equation (13) for the probability density over the 6N -dimensional phase space contains way too much information.
We are interested in macroscopic quantities, like the average kinetic energy of the gas

K.E. ≡
〈

1

N

N∑
i=1

p2i
2m

〉
=

1

m
⟨p21⟩ =

1

m

∫ N∏
i=1

dΓiρ(Q,P; t)p21 ≡ 1

m

∫
dΓ1ρ1(q1,p1; t)p

2
1 , (14)

where we have used the indistinguishability of the particles, and defined the 1-body probability density as the marginal
probability density

ρ1(q1,p1; t) ≡
∫ N∏

i=2

dΓiρ(Q,P; t) . (15)

Observables like Eq. (14) are one-body properties, which only require ρ1, which is over a space of much lower dimension.
Thus, it is sensible to look for the evolution of ρ1.

Using the Liouville equation (13), we find

∂ρ1
∂t

=

∫ ∏
i≥2

dΓi
∂

∂t
ρ(Q,P; t) =

∫ ∏
i≥2

dΓi

[
{H1, ρ}︸ ︷︷ ︸
≡ 1

+

N∑
j=1

∂ρ

∂pj
·
∑
k ̸=j

∂Vjk

∂qj︸ ︷︷ ︸
≡ 2

]
. (16)
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2 THE BBGKY HIERARCHY

Calculating each term individually, we have

1 =

∫ ∏
i≥2

dΓi

[(
∂H1

∂q1
· ∂ρ

∂p1
− ∂H1

∂p1
· ∂ρ

∂q1

)
︸ ︷︷ ︸

≡ 1a

+
∑
j≥2

(
∂H1

∂qj
· ∂ρ

∂pj
− ∂H1

∂pj
· ∂ρ

∂qj

)
︸ ︷︷ ︸

≡ 1b

]
(17)

Because ∂H1/∂q1 and ∂H1/∂p1 only depend on q1 and p1, the integral over q2,q3, etc. and p2,p3, etc. passes through it,
and we have

1a =
∂H1

∂q1
· ∂ρ1
∂p1

− ∂H1

∂p1
· ∂ρ1
∂q1

= {H1, ρ1} . (18)

For part 1b , we use the fact that ∂H1/∂qj doesn’t depend on pj , and ∂H1/∂pj doesn’t depend on qj to write

1b =

∫ ∏
i≥2

dΓi

∑
j≥2

[
∂

∂pj
·
(
∂H1

∂qj
ρ

)
− ∂

∂qj
·
(
∂H1

∂pj
ρ

)]
= 0 , (19)

since the integral over a total derivative is zero (assuming there are no boundary terms, which is true for either periodic
boundary conditions or a normalizeable ρ in open boundary conditions!).

Term 2 , the interaction term, is also simplified by splitting the indices between j = 1 and j > 1:

2 =

∫ ∏
i≥2

dΓi

[
∂ρ

∂p1
·
∑
k ̸=1

∂V1k

∂q1︸ ︷︷ ︸
≡ 2a

+
∑
j≥2

∂ρ

∂pj
·
∑
k ̸=j

∂Vjk

∂qj︸ ︷︷ ︸
≡ 2b

]
(20)

Term 2a can be simplified using the indistinguishability of particles k ̸= 1:

2a =

∫ ∏
i≥2

dΓi
∂ρ

∂p1
· ∂V12

∂q1
≡ (N − 1)

∫
dΓ2

∂ρ2
∂p1

· ∂V12

∂q1
, (21)

where we have defined the 2-body probability density

ρ2(q1,q2,p1,p2; t) ≡
∫ ∏

i≥3

dΓiρ(Q,P; t) . (22)

Finally, term 2b is zero for the same reason as term 1b (19):

2b =

∫ ∏
i≥2

dΓi

∑
j≥2

∂

∂pj
·
(
ρ
∑
k ̸=j

∂Vjk

∂qj

)
= 0 . (23)

Thus, we find the overall 1-body evolution equation

∂ρ1
∂t

+ {ρ1, H1} = (N − 1)

∫
dΓ2

∂ρ2
∂p1

· ∂V12

∂q1
. (24)

This contains much less information than the Liouville equation (13). It is almost closed in ρ1, but has the annoying ρ2-
dependence on the right-hand side. Intuitively, this is because the probability density of a single particle can’t be understood
without accounting for the joint probability density of it encountering another particle. Unfortunately, ρ2(q1,q2,p1,p2) ̸=
ρ1(q1,p1)ρ1(q2,p2) since the particles are not independent. For example, for repulsive interactions, ρ2(q,q,p,p

′) <
ρ1(q,p)ρ1(q,p

′) since having one particle at location q makes it less likely to have another particle there.
To find the evolution of ρ2, we can make a similar calculation to Eqs. (16)-(24). Sparing you the details, the final answer is

∂ρ2
∂t

+ {ρ2, H1 + V12} = (N − 2)

∫
dΓ3

[
∂ρ3
∂p1

· ∂V13

∂q1
+

∂ρ3
∂p2

· ∂V23

∂q2

]
. (25)

The 2-body equation contains dependence on the 3-body density. Likewise, the evolution of the 3-body density will depend
on the 4-body density, and so on. This is the BBGKY hierarchy. Because we are only interested in macroscopic, few-body
obervables, we must truncate this hierarchy somewhere, using some physically-motivated approximation.
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3 THE BOLTZMANN EQUATION

3 The Boltzmann equation

Let’s define the number densities

f1(q1,p1, t) ≡ Nρ1(q1,p1; t) (26)

f2(q1,q2,p1,p2, t) ≡ N(N − 1)ρ2(q1,q2,p1,p2; t) (27)

...

fs(q1, . . . ,qs,p1, . . . ,ps, t) ≡
N !

(N − s)!
ρs(q1, . . . ,qs,p1, . . . ,ps; t) . (28)

These are no longer probability densities. The normalization condition for f1 is, for example,∫
dΓ1f1(q1,p1, t) = N . (29)

Now let’s write out the 2-body equation for f2(q1,q2,p1,p2) explicitly:

ḟ2 +
∂f2
∂q1

· p1

m
+

∂f2
∂q2

· p2

m︸ ︷︷ ︸
≡ 1

−
[
∂f2
∂p1

· ∂U1

∂q1
+

∂f2
∂p2

· ∂U2

∂q2

]
︸ ︷︷ ︸

≡ 2

−
[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1︸ ︷︷ ︸
≡ 3

=

∫
dΓ3

[
∂f3
∂p1

· ∂V13

∂q1
+

∂f3
∂p2

· ∂V23

∂q2

]
︸ ︷︷ ︸

≡ 4

, (30)

where we have used the fact that ∂V12/∂q2 = −∂V12/∂q1.
We will now use dimensional analysis to guess which terms from this equation are the most important. For a gas at room

temperature, there are a convenient series of scale separation that make this easy. (This is where the applicability of these
calculations to other many situations—e.g. astrophysics—breaks down, since long-range interactions and higher densities mess
things up.)

Air molecules at room temperature have typical velocities of v ≈ 102m/s and interaction radii of d ≈ 10−10m. Thus, the
time it takes a collision to occur τc ≈ d/v ≈ 10−12s is very small compared to, say, the time it takes a molecule to cross a box
U(q) of length 1m, τU ≈ L/v ≈ 10−2s. The density of air is also very low: n ≡ N/V ≈ 1026/m3 ≪ 1/d3. Thus, the distance
a particle typically travels between collisions, ℓMF or the “mean-free path”, is large compared to d. This can be estimated by
considering the volume ℓMFπd

2 swept out by a particle traveling this distance, and comparing it to the typical volume one
must search before encountering a particle, V/N :

ℓMFπd
2 ≈ V

N
=⇒ ℓMF ≈ 1

nd2
. (31)

This is given by ℓMF ≈ 10−6m. The mean-free time is then given by τMF = ℓMF/v ≈ 10−8m.
We have found three processes, each well-separated from the other in terms of length and time-scales:

τc ≪ τMF ≪ τU , d ≪ ℓMF ≪ ℓU . (32)

These are summarized by the following table:

Process Length scale Time scale

Collisions d ≈ 10−10m τc ≈ 10−12s

Free motion
between collisions

ℓMF ≈ 10−6m τMF ≈ 10−8s

Effects of U(q) ℓU ≈ 1m τU ≈ 10−2s

The Boltzmann equation, which we will now derive, exploits these two separations of length and time scale.
Now let’s return to Eq. (30) and examine it term-by-term. All terms have dimension T−1N2L−6. Let V , U , and KE

indicate the energy scales of V (q), U(q), and p2i /2m respectively. Also suppose that the system size is comparable to ℓU ,
so that f2 ∼ (N/ℓ3U )

2. Finally, define a new “length scale of interest” ℓ ≪ ℓU , such that ∂f2/∂qi ∼ f2/ℓ. We find the
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3 THE BOLTZMANN EQUATION

approximate scaling of each term

1 ∼ KE

(
N

ℓ3U

)2
1

ℓ

1

mv
(33)

2 ∼ U
1

ℓU

(
N

ℓ3U

)2
1

mv
∼ U

KE

ℓ

ℓU
1 ≪ 1 (34)

3 ∼ V
1

d

(
N

ℓ3U

)2
1

mv
(35)

4 ∼
∫

V
1

d

(
N

ℓ3U

)3

∼ V d3
1

d

(
N

ℓ3U

)3
1

mv
∼ N

d3

ℓ3U
3 ≪ 3 (36)

We can thus eliminate term 2 , since the gradients of the external potential are chosen to be significantly smaller than those
of f2 (and the potential energy U is at most comparable with the kinetic energy). We can also, crucially, eliminate term
4 , since it is smaller than term 3 by a factor of nd3 ∼ 10−4 ≪ 1. Since 4 contains all the f3-dependence, we have thus
truncated the BBGKY hierarchy.

We are left with the new equation

ḟ2 =

[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
− ∂f2

∂q1
· p1

m
− ∂f2

∂q2
· p2

m
, (37)

where the = sign should really be an ≈ but we will (semi-phenomenologically) pretend the strict equality holds from now on.
Let’s simplify ∂f2/∂qi further. We can change the coordinates q1, q2 to q+ ≡ (q1 + q2)/2 and q ≡ q1 − q2, and note

that (suppressing the p dependence)

∂f2
∂q1

= 2
∂f2
∂q+

+
∂f2
∂q

,
∂f2
∂q2

= 2
∂f2
∂q+

− ∂f2
∂q

. (38)

Since the gradient f2 with respect to q is of the order 1/d while variations with respect to q+ are the inverse of a meso- or
macroscopic lengthscale (e.g. ∼ 1/ℓ), we can neglect the ∂/∂q+ terms, and approximate

∂f2
∂q1

≈ ∂f2
∂q

,
∂f2
∂q2

≈ −∂f2
∂q

=⇒ ∂f2
∂q1

· p1

m
+

∂f2
∂q2

· p2

m
≈ ∂f2

∂q
·
(
p1

m
− p2

m

)
. (39)

Return to the 1-body equation (24), which in terms of f1 and f2 is given by

∂f1
∂t

+ {f1, H1} =

∫
dΓ2

∂f2
∂p1

· ∂V12

∂q1
≡ ∂f1

∂t

∣∣∣∣
coll.

. (40)

In the steady state, Eqs. (37) and (39) gives us[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
=

∂f2
∂q

·
(
p1

m
− p2

m

)
(41)

=⇒
∫

dΓ2

[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
=

∫
dΓ2

∂f2
∂p1

· ∂V12

∂q1
=

∫
dΓ2

∂f2
∂q

·
(
p1

m
− p2

m

)
. (42)

The first equality in Eq. (42) is obtained by noting that the second term is a total derivative in p2, which is integrated over.
Thus, the second equality of Eq. (42) allows us to replace the right-hand side of Eq. (40). Also defining p = p2 − p1 so that
the integral is over the relative momentum of coordinate 2 in coordinate 1’s frame, we find

∂f1
∂t

∣∣∣∣
coll.

= − 1

m

∫
d3qd3pp · ∂f2

∂q
(q1,q1 + q,p1,p1 + p) . (43)

Keep in mind that we have made the replacement q = q1 − q2 and p = p2 − p1.
[End of recitation 4]
Can we simplify the collision term (43) even more? Note that for any function A(q,p), we can write∫

d3pd3q p · ∂A(q,p)
∂q

=

∫
d3pd2q⊥ |p|

[
A(q⊥ + p̂ℓ′,p)−A(q⊥ − p̂ℓ′,p)

]
, (44)
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3 THE BOLTZMANN EQUATION

where ℓ′ → ∞, p̂ = p/|p|, and q⊥ · p̂ = 0. That is, we have decomposed the q space into a plane q⊥ perpendicular to p, and
an axis parallel to p, which we have integrated over. We can do the same with Eq. (43) to find

∂f1
∂t

∣∣∣∣
coll.

= −
∫

d3pd2q⊥
|p|
m

[
f2
(
q1,q1 − (q⊥ + p̂ℓ′),p1,p1 + p, t

)
− f2

(
q1,q1 − (q⊥ − p̂ℓ′),p1,p1 + p, t

)]
. (45)

In principle, we must take ℓ′ → ∞ since the limits of the q integral is infinity, but we don’t actually need to because f2 only
varies with respect to q1 − q2 on a scale of d. Thus, as long as ℓ′ ≫ d, we are fine.

This result, and its relation to collision kinematics, is illustrated below. Working in a frame where p1 = 0, our integral over
p̂ results in the difference of two terms: the probability of the blue and black particles’ configuration, minus the probability of
the red and black particles’ configuration.

We can now also note that we can make the spatial coordinates in each term equal using “streaming”. (This is where the
talk of collisions and scattering really starts to make sense.) Because probability is constant along a trajectory, we can write

f2
(
q1,q1 − (q⊥ − p̂ℓ′),p1,p1 + p, t

)
= f2

(
q′
1,q

′
1 − (q′

⊥ + p̂ℓ′),p′
1,p

′
1 + p′, t

)
(46)

where two particles starting at q1 ,q1 − (q⊥ − p̂ℓ′) with momenta p1, p1 + p end up at q′
1, q1 − (q′

⊥ + p̂ℓ′) with momenta
p′
1, p′

1 + p′. (You can check that we have enough degrees of freedom for some such q′
1, q

′
⊥, p

′
1, and p′ to exist.) This

is illustrated below: Again, working in the frame where p1 = 0, we have replace the probability of the red/black particle
configuration (now drawn with dashed borders) with the probability of the evolved system, at q′

1, q1 − (q⊥ + p̂ℓ′) with new
momenta p′

1, p1 + p′:

However, because f2 doesn’t depend strongly on the center of mass q1 + q2, we can use q′
1 ≈ q1. In fact, we can also use
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4 THE H-THEOREM

q1 − (q⊥ − p̂ℓ′) ≈ q1, as long as ℓ′ ≪ ℓ (which is possible since d ≪ ℓ).1 All in all, we may write

∂f1
∂t

∣∣∣∣
coll.

= −
∫

d3pd2q⊥
|p|
m

[
f2(q1,q1,p1,p1 + p, t)− f2(q1,q1,p

′
1,p

′
1 + p′, t)

]
(47)

= −
∫

d3p2d
2q⊥

|p|
m

[
f2(q1,q1,p1,p2, t)− f2(q1,q1,p

′
1,p

′
2, t)

]
, (48)

for some p′
1, p

′ = p′
2 − p′

1 which are related to p1 and p = p2 − p1 through the equations of motion, in a way that depends
on q⊥ and ℓ′. Note that we have changed coordinates back to p2 = p+ p1.

Finally, to turn this into a closed equation of f1, we make the molecular chaos assumption, that the particles are
uncorrelated. That is, we assume

f2(q1,q1,p1,p2, t) ≈ f1(q1,p1, t)f1(q1,p2, t) (49)

f2(q1,q1,p
′
1,p

′
2, t) ≈ f1(q1,p

′
1, t)f1(q1,p

′
2, t) . (50)

Crucially, we assume that particles are uncorrelated both pre-collision and post-collision, something that isn’t necessarily true.
Thus, we are left with the Boltzmann equation

∂f1
∂t

+ {f1, H1} =
1

m

∫
d2q⊥d

3p2|p1 − p2|
[
f1(q1,p

′
1, t)f1(q1,p

′
2, t)− f1(q1,p1, t)f1(q1,p2, t)

]
. (51)

This is finally a closed equation for f1. The right-hand side describes how collisions between particles co-located near q1 with
“incidence vector” q⊥ transfer momentum from (p1,p2) to (p′

1,p
′
2), a process that occurs with a weight d2q⊥|p1−p2|/m. The

final momenta (p′
1,p

′
2) are deterministically related to q⊥ and the initial momenta, and the dependence requires knowledge of

V . (Note that we could also make a variable change to the d2q⊥ integral to re-write Eq. (51) in terms of scattering cross
sections. In this case, there is still an implicit relationship between (p′

1,p
′
2) and (p1,p2) which is determined by the form of

the potential V .)
After all this hand-waving, you may not believe Eq. (51). If you like, you can also think of it as a phenomenological

equation: the simplest equation, to this order in f1, that describes the effect of collisions while also respecting the symmetries
of the system. Then, the scattering cross section and the relationship between the p′

i and the pi can be thought of as
“free parameters” constrained only by the symmetries of the dynamics. However, it is also true that the steps made in this
derivation can be justified more rigorously. In fact, mathematicians seem to have recently proven that Eq. (51) is a valid
description of the dynamics of dilute hard spheres.2 With a physicist’s appeal to universality, we can comfortably extend this
to any dilute gas with short-ranged interactions.

In celebration of our newly closed equation (51), we will henceforth replace f1 with f in our notation, understanding that
f always corresponds to the 1-body distribution.

4 The H-theorem

We started with time-reversible dynamics (Eq. (13)). Is the Boltzmann equation (51) time-reversible as well? The H-theorem
tells us that it is not.

Theorem 4.1: The H-theorem

If f(q,p, t) satisfies the Boltzmann equation (51), then dH/dt ≤ 0, for

H(t) =

∫
d3qd3pf(q,p, t) ln f(q,p, t) . (52)

You will recognize the right-hand side to be proportional to the negative entropy of the system. Thus, the H-theorem tells
us that entropy always increases. Now, let’s go through the proof.

1Note that, because the momenta change significantly during collisions, we couldn’t have just made the positions equal in Eq. (45). (This would
clearly result in the collision term being zero!) These approximations and substitutions basically amount to the fact that the momenta “teleport” a
significant distance during collision, which are themselves not spatially-resolved.

2Y. Deng et al., Long time derivation of the Boltzmann equation from hard sphere dynamics, arXiv:2408.07818 [math], July 2025.
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4 THE H-THEOREM

Proof 4.1: Proof of H-theorem.

Use the shorthand notation
∫
d3qd3p ≡

∫
q,p

. We can explicitly write the time evolution of H(t) using the Boltzmann
equation as

dH

dt
=

∫
q,p

∂f

∂t

(
ln f + 1

)
=

∫
q,p

∂f

∂t
ln f =

∫
q,p

(
{H1, f}︸ ︷︷ ︸
≡ 1

+
∂f

∂t

∣∣∣∣
coll.

)
︸ ︷︷ ︸

≡ 2

ln f (53)

where

1 =

∫
q,p

{H1, f} ln f =

∫
q,p

(
∂U

∂q
· ∂f
∂p

− p

m
· ∂f
∂q

)
ln f = 0 (IBP) (54)

and

2 =

∫
q,p

∂f

∂t

∣∣∣∣
coll.

ln f (55)

=

∫
q,p1

∫
d3p2d

2⃗b
|p1 − p2|

m

[
f(q,p′

1)f(q,p
′
2)− f(q,p1)f(q,p2)

]
ln f(q1,p1) . (56)

Note that for an arbitrary function A(p1,p2),∫
d3p1d

3p2A(p1,p2) =

∫
d3p1d

3p2A(p2,p1) =

∫
d3p1d

3p2
1

2

[
A(p1,p2) +A(p2,p1)

]
. (57)

Thus, we can apply this symmetrization to 2 to find, suppressing all q-dependence since everything occurs at the same
spatial coordinate,

2 =

∫
q,p1,p2 ,⃗b

|p1 − p2|
m

1

2

{[
f(p′

1)f(p
′
2)− f(p1)f(p2)

]
ln f(p1) +

[
f(p′

2)f(p
′
1)− f(p2)f(p1)

]
ln f(p2)

}
(58)

=

∫
q,p1,p2 ,⃗b

|p1 − p2|
2m

[
f(p′

2)f(p
′
1)− f(p2)f(p1)

]
ln
[
f(p1)f(p2)

]
. (59)

Now, it is useful to keep in mind that p′
1 and p′

2 are really functions of b⃗, p1, and p2. Moreover, this functional
relationship is invertible and has unit Jacobian. Recall also that |p′

1 − p′
2| = |p1 − p2|. Then, we can use the identity

(for an invertible u(x)) ∫
ddxF

(
u(x)

)
=

∫
ddu

|detJu|
F (u) (60)

to make an additional symmetrization

2 =

∫
q,p1,p2 ,⃗b

|p1 − p2|
2m

1

2

{[
f(p′

2)f(p
′
1)− f(p2)f(p1)

]
ln
[
f(p1)f(p2)

]
(61)

+
[
f(p2)f(p1)− f(p′

2)f(p
′
1)
]
ln
[
f(p′

1)f(p
′
2)
]}

, (62)

where in the second term p1 and p2 are understood as functions of p′
1, p

′
2, and b⃗. Thus, we find

dH

dt
= 2 = −

∫
q,p1,p2 ,⃗b

|p1 − p2|
4m

[
f(p′

2)f(p
′
1)− f(p2)f(p1)

]
︸ ︷︷ ︸

≡ a

[
ln
[
f(p′

1)f(p
′
2)
]
− ln

[
f(p1)f(p2)

]]
︸ ︷︷ ︸

≡ b

. (63)

When f(p′
2)f(p

′
1) > f(p2)f(p1), term a is positive, but so is term b . When f(p′

2)f(p
′
1) < f(p2)f(p1), term a is

negative, but so is term b . All in all, we see that dH/dt ≤ 0.
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4 THE H-THEOREM

Thus the reversible microscopic dynamics exhibit an apparent macroscopic irreversibility. Two questions: (1) why is this
the case, and (2) how can the Boltzmann equation (51) still be an accurate description of the dynamics?

1. How is the Boltzmann equation irreversible? We have made many approximations to get to Eq. (51), but
not all of them manifestly violate time-reversibility. However, we can identify one culprit: in the molecular chaos
approximation (49)-(50), we have assumed that particles are just as uncorrelated before a collision as they are after. In
reversible dynamics, this isn’t possible.

2. How can an irreversible equation accurately describe reversible dynamics? The answer to this question
involves coarse-graining. While it is, in principle, possible for all the gas in a room to move to one side of the room,
understanding this process would require detailed knowledge of all the microscopic degrees of freedom and all of their
correlations. We are not interested in such a description, and it isn’t needed to describe the most probable macroscopic
behavior of the system.

Another more mathematical way to understand this is as follows: consider a system with many states, some more likely
than others. (E.g. some have multiple copies.) Imagine that it is possible to transition between any two states, and
that the dynamics of these transitions satisfy time-reversal symmetry.3 In search of a lower-dimensional description of
our system, we may disregard some of the transitions. This in general ruins the time-reversal symmetry of the system.
However, if we eliminate the more unlikely transitions, the description will be accurate enough to describe the overall
behavior of the system. One way to “keep the most likely transitions” is to favor those which increase the degeneracy of
states. The result is that the entropy of the system increases, i.e. Ḣ ≤ 0. This is, in principle, what we have done in our
derivation of the Boltzmann equation, although it isn’t so transparent.

4.1 Consequences: the local equilibrium distribution

Because H is monotonically decreasing, its steady state is constant. We can thus deduce the steady state of the system by
requiring Ḣ = 0. In fact, we can make the following equivalence:

Ḣ = 0 ⇔ f(q1,p1)f(q1,p2) = f(q1,p
′
1)f(q1,p

′
2) ⇔ ln f(q1,p1) + ln f(q1,p2) = ln f(q1,p

′
1) + ln f(q1,p

′
2) . (64)

Because (p1,p2) and (p′
1,p

′
2) are the momenta before and after a collision, this implies that ln f(q1,p1) + ln f(q1,p2) is the

same value before and after collisions. Thus, ln f(q,p) must be a linear combination of quantities that are conserved by the
collisions. We can identify 3 such quantities:

1. Particle number: 1 + 1 = 1 + 1

2. Momentum: p1 + p2 = p′
1 + p′

2

3. Kinetic energy: |p1|2 + |p2|2 = |p′
1|2 + |p′

2|2 .

We can thus write the “local equilibrium” form of f :

fLEQ(q,p) = γ(q) exp

[
−α(q) · p− β(q)

(
|p|2

2m
+ U(q)

)]
. (65)

We have exercised our freedom of choice of the q-dependent prefactors to write it this way. You can check that

∂fLEQ

∂t

∣∣∣∣
coll.

= 0 . (66)

However, ḟLEQ ̸= 0 in general: it must also have zero {H1, f}, which requires particular choices of γ,α, β.
Eq. (65) represents the “local equilibrium” reached on timescales ∼ τMF. Because momenta and kinetic energy are

exchanged in collisions, after a few collisions have occurred, their probability distribution is roughly the same across all
particles in a local region. Once this has occurred, the system undergoes a slower relaxation to global equilibrium. This time
period is governed by what we call the system’s “hydrodynamic” description.

Another way to justify this calculation is through a perturbation in the small parameter τMF/τU . Recall that τU is an
extrinsic timescale, describing the evolution of the system due to the external potential U . The one-body term {H1, f} in ∂tf
scales like 1/τU . Moreover, the collision term scales like 1/τMF. Thus we can define the non-dimensionalized operators

L[f ] ≡ τU{H1, f} (67)

C[f, g] ≡ τMF

∫
d3p̃d2q⊥

[
f(q,p)g(q, p̃)− f(q,p′)g(q, p̃′)

]
(68)

3We would say, for states A and B with probabilities P (A) and P (B) and transition rates P (A → B) and P (B → A), that P (A)P (A → B) =
P (B)P (B → A).
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5 HYDRODYNAMICS

so that

∂f

∂t
=

1

τU
L[f ] + 1

τMF
C[f, f ] , so in steady state (69)

∂f

∂t
= 0 =⇒ εL[f ] + C[f, f ] = 0 , where ε ≡ τMF

τU
. (70)

We can then write the solution of the Boltzmann equation as

f(q,p, t) = f (0)(q,p, t) + εf (1)(q,p, t) + ε2f (2)(q,p, t) + . . . (71)

where the terms are determined by equations like

C[f (0), f (0)] = 0 (72)

L[f (0)] + C[f (0), f (1)] + C[f (1), f (0)] = 0 (73)

. . . . (74)

The order-ε0 solution is f (0) = fLEQ, given in Eq. (65). We will examine the consequences of this perturbation scheme in the
next section. After making some definitions, we will look at how this 0th-order solution f (0) behaves in Sec. 5.2. Then in
Sec. 5.3, we will find an approximate solution for f (1) and investigate its behavior.

5 Hydrodynamics

5.1 Conserved quantities

The long-timescale evolution of the system is governed by what we call “slow fields”, fields which take a long time to relax
(τ ≫ τMF). In this system, it can be argued that the only such fields are the conserved quantities. These are given by the
particle density n, local velocity u, and local “comoving” kinetic energy ϵ, defined as follows:

n(q, t) ≡
∫

d3pf(q,p, t) (75)

u(q, t) ≡ 1

n(q, t)

∫
d3p

p

m
f(q,p, t) (76)

ϵ(q, t) ≡ 1

n(q, t)

∫
d3p

m

2

∣∣∣∣ pm − u(q, t)

∣∣∣∣2f(q,p, t) . (77)

We also define the local averaging operation ⟨ · ⟩: for an observable O(q,p, t), we write

⟨O(q,p, t)⟩ = 1

n(q, t)

∫
d3pO(q,p, t)f(q,p, t) . (78)

Thus, n(q, t) = n(q, t)⟨1⟩, u(q, t) = n(q, t)⟨p/m⟩, and ϵ(q, t) = n(q, t)⟨m2 |u− p/2m|2⟩.
The dynamics of these quantities are relatively simple because they are conserved by collisions. As a consequence, we have

the following lemma:

Lemma 5.1: Collision integral of conserved quantities is zero

For a quantity χ(q,p) which is conserved during a collision, i.e.

χ(q,p1, t) + χ(q,p2, t) = χ(q,p′
1, t) + χ(q,p′

2, t) , (79)

its flux due to collisions is zero:

Jχ(q, t) ≡
∫

d3pχ(q,p, t)
∂f

∂t

∣∣∣∣
coll.

= 0 . (80)
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5 HYDRODYNAMICS

We will skip the proof, which is straightforward algebra. As a consequence, we can compute the evolution of χ-density:

∂t(n⟨χ⟩) =
∂

∂t

[ ∫
d3pχ(q,p, t)f(q,p, t)

]
=

∫
d3p

[
χ∂tf + f + ∂tχ (81)

=

∫
d3p

[
χ{H1, f}+ χ

∂f

∂t

∣∣∣∣
coll.

+ f∂tχ

]
=

∫
d3p

[
χ{H1, f}+ f∂tχ

]
(82)

=

∫
d3p

[
χ
∂U

∂q
· ∂f
∂p

− χ
p

m
· ∂f
∂q

+ f∂tχ

]
(83)

=

∫
d3p

[
− f

∂U

∂q
· ∂χ
∂p

− p

m
· ∂

∂q

(
χf
)
+ f

p

m
· ∂χ
∂q

+ f∂tχ

]
(IBP) . (84)

As a result, we find

∂t(n⟨χ⟩) = − ∂

∂q
·
(
n

〈
p

m
χ

〉)
− n

∂U

∂q
·
〈
∂χ

∂p

〉
+ n

〈
p

m
· ∂

∂q
χ

〉
+ n⟨∂tχ⟩ . (85)

Now we will use Eq. (85) to find the evolution of n, u, and ϵ.

5.1.1 Evolution of n(q, t)

Letting χ = 1, Eq. (85) becomes

∂tn = −∂α
(
nuα

)
. (86)

From now on, repeated greek indices are summed over.

5.1.2 Evolution of u(q, t)

Letting χ = p/m so that ⟨χ⟩ = u, Eq. (85) becomes

∂t
(
nuα

)
= − 1

m2
∂β
(
n⟨pαpβ⟩

)
− n

m
∂αU (87)

≡ −∂β

(
Pαβ

m
+ nuαuβ

)
− n

m
∂αU (88)

=⇒ n∂tuα + uα ∂tn︸︷︷︸
=−∂β(nuβ)

= − 1

m
∂βPαβ − uα∂β(nuβ)− nuβ∂βuα − n

m
∂αU (89)

=⇒ ∂tuα = − 1

nm
∂βPαβ − uβ∂βuα − 1

m
∂αU . (90)

We have defined

Pαβ = mn

〈(
pα
m

− uα

)(
pβ
m

− uβ

)〉
(91)

Defining the material derivative

DtA(q, t) ≡ ∂tA+ uβ∂βA , (92)

we find

Dtuα = − 1

nm
∂βPαβ − 1

m
∂αU . (93)

This is just Newton’s ma = F law written in fluid form. The left is the acceleration, and the right is the force due to internal
and external energy, respectively.
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5.1.3 Evolution of ϵ(q, t)

Finally, use Eq. (85) with χ = m
2

∣∣u− p
m

∣∣2 so that ⟨χ⟩ = ϵ, to write

∂t(nϵ) = n∂tϵ+ ϵ ∂tn︸︷︷︸
=−∂α(nuα)

(94)

= −∂α

[
n

〈
pα
m

m

2

(
pβ
m

− uβ

)(
pβ
m

− uβ

)〉]
− n∂αU ⟨pα/m− uα⟩︸ ︷︷ ︸

=0

+n

〈
pα
m

m

(
uβ − pβ

m

)
∂αuβ

〉
− nm

〈
pα
m

− uα

〉
︸ ︷︷ ︸

=0

∂tuα

(95)

≡ −∂αhα − ∂α(nuαϵ) + nm

〈(
pα
m

− uα

)(
uβ − pβ

m

)
∂αuβ

〉
+ nm

〈
uα

(
uβ − pβ

m

)
︸ ︷︷ ︸

=0

∂αuβ

〉
(96)

= −∂αhα − ∂α(nuαϵ)− Pαβ∂αuβ (97)

where we have defined

hα ≡ nm

2

〈(
pα
m

− uα

)(
pβ
m

− uβ

)(
pβ
m

− uβ

)〉
. (98)

This implies that

n∂tϵ = −∂αhα − nuα∂αϵ− Pαβuαβ (99)

=⇒ Dtϵ = − 1

n

[
∂αhα + Pαβuαβ

]
. (100)

We have also defined the rate of strain tensor (using the symmetry of Pαβ and the fact that α and β are summed-over dummy
indices)

uαβ ≡ 1

2

(
∂αuβ + ∂βuα

)
. (101)

Eqs. (86), (93), and (100) thus constitute the hydrodynamic description of our system. Now, we will study their steady-state
solutions.

[END OF RECITATION 5]
Let’s repeat the hydrodynamic equations (86), (93), and (100) for clarity:

Dtn = −n∂αuα (102)

Dt(muα) = − 1

n
∂βPαβ − ∂αU (103)

Dtϵ = − 1

n

[
∂αhα + Pαβuαβ

]
, (104)

where we recall the definition of the hydrodynamic fields:

n = ⟨1⟩ , uα =

〈
pα
m

〉
, ϵ =

〈
m

2

(
pβ
m

− uβ

)(
pβ
m

− uβ

)〉
, (105)

Pαβ = mn

〈(
pα
m

− uα

)(
pβ
m

− uβ

)〉
, hα =

nm

2

〈(
pα
m

− uα

)(
pβ
m

− uβ

)(
pβ
m

− uβ

)〉
(106)

with averages computed using the formula in Eq. (78), and the material derivative

DtA = ∂tA+ uβ∂βA . (107)

5.2 Zeroth-order hydrodynamics

Recall that, using the local equilibrium assumption (which hinged on the separation of collision timescale from the other
timescales), we found an approximate solution to the Boltzmann equation, given in Eq. (65). Let’s now assume that f(q,p, t)
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5 HYDRODYNAMICS

takes on this solution, and find out the resulting behavior of the hydrodynamic fields. With proper normalization, this
“zeroeth-order solution” (denoted by superscripts (0)) is written as

f (0)(q,p, t) =
n(q, t)[

2πmkBT (q, t)
]3/2 exp

[
− |p−mu(q, t)|2

2mkBT (q, t)

]
, (108)

where indeed
∫
d3pf (0) = n and ⟨p/m⟩(0) = u as we have written them.

This is a Gaussian distribution over p with mean µα(q, t) ≡ muα(q, t) and variance σ(q, t)2 ≡ mkBT (q, t). This makes
calculation of various correlations between the components pα relatively easy. For instance,

P
(0)
αβ (q, t) = mn

〈(
pα
m

− uα

)(
pβ
m

− uβ

)〉(0)

=
mn

(2πσ2)3/2

∫
p

1

m2
(pα − µα)(pβ − µβ)e

−|p−µ|2/2σ2

(109)

=
n

m

∫
x

xαxβ
e−|x|2/2σ2

(2πσ2)3/2
=

n2

m
δαβσ

2 = δαβnkBT , (110)

which is the ideal gas law. Likewise, we can note that

ϵ(q, t) =
1

n
tr Pαβ(q, t) =⇒ ϵ(0)(q, t) =

3

2
kBT (111)

and moreover

h(0)
α = 0 (112)

because odd moments of pα −muα are zero. Thus, we find zeroth-order hydrodynamic equations

Dtn = −n∂αuα (113)

mDtuα = −∂αU − 1

n
∂α(nkBT ) (114)

Dtϵ = −kBT∂αuα . (115)

However, this description has a few deficiencies. First, it describes isentropic dynamics (as you showed in the pset), and
thus can’t describe a system that increases in entropy towards equilibrium. Second, none of the conserved quantities will relax
to equilibrium. (I skip this calculation, which is given in lecture 11 of Mehran Kardar’s ocw notes.)

5.3 First-order hydrodynamics

It is clear that we have to go beyond zeroth order. Recall our perturbative calculation, which we started in Eqs. (71)-(74). To
first order in ε = τMF/τU , we must now solve

C[f (0), f (1)] + C[f (1), f (0)] + L[f (0)] . (116)

To make this calculation, we will define

cα ≡ pα
m

− uα (117)

so that

f (0)(q, t) =
n

[2mkBT ]3/2
exp

(
− mcαcα

2kBT

)
(118)

and

L = Dt + cα∂α − 1

m
∂αU

∂

∂cα
. (119)

Note that the material derivative obeys the product rule

Dt[AB] = ADtB +BDtA . (120)
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5 HYDRODYNAMICS

Because L is O(ε) relative to C, we can assume all the hydrodynamic fields in f (0) obey their 0th-order hydrodynamic
equations (113)-(115). Then, we find

Dtf
(0) =

Dtn

n
f (0) − 3

2

DtT

T
f (0) +

m(Dtuα)cα
kBT

f (0) +
cαcαDtT

2kBT 2
f (0) (121)

=⇒ Dtf
(0)

f (0)
= −∂αuα + ∂αuα − cα

kBT

[
∂αU +

1

n
∂α(nkBT )

]
− mcαcα∂βuβ

3kBT
(122)

= −cα

[
∂αU

kBT
+

∂αn

n
+

∂αT

T
+

mcα∂βcβ
3kBT

]
. (123)

Similarly, ∂αf
(0) is given by

∂αf
(0)

f (0)
=

∂αn

n
− 3

2

∂αT

T
+

m(∂αcβ)cβ
kBT

+
mcβcβ∂αT

2kBT 2
(124)

and finally

1

f (0)

∂

∂cα
f (0) = −mcα

kBT
. (125)

Combining these, we find

L[f (0)]

f (0)
=

(
mc2

2kBT
− 5

2

)
cα∂αT

T
− mc2∂αcα

3kBT
+

mcαcβ∂αcβ
kBT

(126)

=

(
mc2

2kBT
− 5

2

)
cα∂αT

T
+

m

kBT

(
cαcβ∂β − 1

3
c2∂α

)
cα (127)

=

(
mc2

2kBT
− 5

2

)
cα∂αT

T
+

m

kBT

(
cαcβ − 1

3
c2δαβ

)
uαβ . (128)

Thus, Eq. (116) becomes

0 = C[f (0), f (1)] + C[f (1), f (0)] + f (0)

[(
mc2

2kBT
− 5

2

)
cα∂αT

T
+

m

kBT

(
cαcβ − 1

3
c2δαβ

)
uαβ

]
. (129)

Let’s also recall the expression for the collision integrals (where we omit all q-dependence):

C[f (0), f (1)] + C[f (1), f (0)] =

∫
d3p̃d2q⊥

[
f (0)(p)f (1)(p̃)︸ ︷︷ ︸

≡ 1

− f (0)(p′)f (1)(p̃′)︸ ︷︷ ︸
≡ 2

+ f (1)(p)f (0)(p̃)︸ ︷︷ ︸
≡ 3

− f (1)(p′)f (0)(p̃′)︸ ︷︷ ︸
≡ 4

]
. (130)

Physically, this describes the flux of collisions between the two fields f (0) and its correction f (1). C[f (0), f (1)] describes
how collisions between f (0) at momentum p and f (1) at all other momenta p̃ transfer these momenta to p′, p̃′. Likewise,
C[f (1), f (0)] describes how collisions between f (1) at momentum p with f (0) at all other momenta p̃ transfer these momenta
to p′, p̃′. Note that the third and term can be written as

3 =

∫
d3p̃d2q⊥f

(1)(q,p, t)f (0)(q, p̃, t) = f (1)(q,p, t) . (131)

Note also that we can enforce the normalization condition

n(q, t) =

∫
d3pf(q,p, t) =

∫
d3p

[
f (0)(q,p, t) + εf (1)(q,p, t) +O(ε2)

]
= n(q,p, t) + ε

∫
d3pf (1)(q,p, t) +O(ε2) (132)

=⇒ 0 =

∫
d3pf (1)(q,p, t) (133)

to find that the first term is zero:

1 =

∫
d3p̃d2q⊥f

(0)(p)f (1)(p̃) = f (0)(p)

∫
d3p̃d2q⊥f

(1)(p̃) = 0 . (134)
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5 HYDRODYNAMICS

Through a more hand-wavey argument, we can also rationalize that because the 2nd and 4th term also integrate over the
argument of f (1), they should also be zero

2 , 4 ≈ 0 . (135)

(This is more true when, for instance, the interactions are weaker.) Thus, we can approximate

C[f (0), f (1)] + C[f (1), f (0)] ≈ 3 = f (1)(q,p, t) (136)

=⇒ 0 = f (1)(q,p, t) + f (0)

[(
mc2

2kBT
− 5

2

)
cα∂αT

T
+

m

kBT

(
cαcβ − 1

3
c2δαβ

)
uαβ

]
. (137)

Thus, we find the 1st-order correction to the density

f (1)(q,p, t) = −f (0)(q,p, t)

[
m

kBT

(
cαcβ − δαβ

3
c2
)
uαβ −

(
mc2

2kBT
− 5

2

)
cα∂α lnT

]
(138)

so that

f(q,p, t) = f (0)(q,p, t)

{
1− ε

[
m

kBT

(
cαcβ − δαβ

3
c2
)
uαβ −

(
mc2

2kBT
− 5

2

)
cα∂α lnT

]}
+O(ε2) (139)

f (0)(q,p, t) =
n(q, t)

[2πmkBT (q, t)]3/2
exp

(
− mcα(q,p, t)cα(q,p, t)

2kBT (q, t)

)
(140)

where cα(q,p, t) = pα/m− uα(q, t).
Let’s clean up our notation by partially changing variables to c = p/m−u (while keeping in mind c’s hidden q-dependence)

and changing from the temperature to the “variance” v(q, t) ≡ kBT (q, t)/m, so that

f (0)(q, c, t) = n(q, t)

[
m

2πkBT (q, t)

]3/2
exp

(
− mcα(q,p, t)cα(q,p, t)

2kBT (q, t)

)
≡ n(q, t)

[2πv(q, t)]3/2
exp

(
− c2

2v(q, t)

)
(141)

−f (1)(q, c, t)

f (0)(q, c, t)
=

(
cαcβ − δαβ

3
c2
)
uαβ

v
−
(
c2

2v
− 5

2

)
cα∂α ln v . (142)

We also define the 1st-order average

⟨O(q, c, t)⟩(1) = 1

n(q, t)

∫
d3cf (1)(q, c, t)O(q, c, t) =

〈
O
[(

cαcβ − δαβ
3

c2
)
uαβ

v
−
(
c2

2v
− 5

2

)
cα∂α ln v

]〉(0)

(143)

=⇒ ⟨O⟩ = ⟨O⟩(0) + ε⟨O⟩(1) +O(ε2) . (144)

We can then use Wick’s theorem to calculate the 1st-order correction to the momentum:〈
pα
m

〉(1)

=

〈(
cα + uα

)[(
cγcβ − δγβ

3
c2
)
uγβ

v
−
(
c2

2v
− 5

2

)
cγ∂γ ln v

]〉(0)

(145)

=

〈
uα

(
cγcβ − δγβ

3
c2
)
uγβ

v
+

(
c2

2v
− 5

2

)
cαcγ∂γ ln v

〉(0)

(146)

=

(
2δβγ − δγβ

3
6

)
uγβ

v
+

(
1

2v
δαγ(3 + 2)v2 − 5

2
· 2vδαγ

)
∂γ ln v = 0 (147)

and the pressure:

P
(1)
αβ = nm⟨cαcβ⟩(1) = nm

〈
− cαcβ

[(
cγcλ − δγλ

3
c2
)
uγλ

v
−
(
c2

2v
− 5

2

)
cγ∂γ ln v

]〉(0)

(148)

= nm

〈
− cαcβ

(
cγcλ − δγλ

3
c2
)
uγλ

v

〉(0)

(149)

= −nm
uγλ

v

(
v2
(
δαβδγλ + δαγδβλ + δαλδβγ

)
− δγλ

3
v2(3 + 2)δαβ

)
(150)

= −nmv
[
2uαβ − 2

3
δαβuγγ

]
= −2nkBT

[
uαβ − δαβ

3
uγγ

]
(151)
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and the energy:

ϵ(1) =
m

2
⟨cαcα⟩(1) =

1

n
tr P

(1)
αβ = 0 (152)

and finally the heat flux:

h(1)
α =

nm

2
⟨cαc2⟩(1) = −nm

2

〈
cαc

2

(
c2

2v
− 5

2

)
cγ∂γ ln v

)〉(0)

(153)

= −nm

4
∂γ ln v

〈cβcβcλcλcαcγ
v

− 5cβcβcαcγ

〉
(154)

= −nmv∂γv

4

[
35− 5 · 5

]
δαγ = −5

2

nk2BT∂αT

m
. (155)

In summary, we see that the hydrodynamic equations (86), (93), and (100) become at first order

Dtn = −n∂αuα (156)

Dt(muα) = − 1

n
∂β

[
nkBT

(
δαβ − 2ε(uαβ − 1

3
δαβuγγ)

)]
− ∂αU (157)

Dtϵ =
1

n

[
ε
5

2
∂α

(
nk2BT∂αT

m

)
− nkBT

(
δαβ − 2ε(uαβ − 1

3
δαβuγγ)

)
uαβ

]
. (158)

In the interest of time, we stopped around here.

16


	Intro, definitions and notations
	The BBGKY hierarchy
	The Boltzmann equation
	The H-theorem
	Consequences: the local equilibrium distribution

	Hydrodynamics
	Conserved quantities
	Evolution of n( q,t)
	Evolution of u( q,t)
	Evolution of ( q,t)

	Zeroth-order hydrodynamics
	First-order hydrodynamics


