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1 Intro, definitions and notations

We are concerned with extremely the high-dimensional problem of many-particle (N > 10?3) Hamiltonian dynamics. How do
we reduce the complicated microscopic dynamics to the simpler evolution of macroscopic quantities?

Work with N particles in 3 dimensions. Suppose particle ¢ has position q; = (¢f, ¢}, ¢f) and momentum p; = (pf, py, p7).
(On the blackboard, I use replace the boldfaced letter with the arrow version, i.e. q; — §;.) Use the notation

Q= (q1,92,---,4an) , P = (p1,p2;---,PN) , I'=(ai, .--,9n8,P1,---,PN) - (1)
Also make the definitions
Qi =49i — 9 , ¢ = |dijl pi =|pil , dr; = d*q;d’p; . (2)
The particles evolve under Hamiltonian dynamics with the Hamiltonian

Z[ ZV%} Hy(Q,P) + ZZV% (3)

=1 J#i i=1 j#i

In particular, we consider a two-body interaction potential V(gq) which is spherically symmetric, i.e. only depending on ¢
rather than q. Also define

Ui=Ul(a), Vij = Viaij) - (4)
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2 THE BBGKY HIERARCHY

We will use the Poisson bracket, which for operators A(Q,P) and B(Q,P) is defined as

N
0A 0B 0A 0B 0A OB 0A 0B
A B = . — . = — — = —— . —
4.5} =2 [8% op; Op; Oqi|] 0Q OP 0P 0Q (5)
It has the following properties (for operators A, B, C' and scalar A), which we will use:
{B,A} = —{A, B} (antisymmetry) (6)
{A,B+XC} ={A,B}+\{A,C} (bilinearity) (7)

{A+ XC,B} ={A, B} + MC, B} (bilinearity) . (8)

The probability density over phase space p(Q, P;t) is the probability density of particles at phase space point (Q,P) at
time t. It evolves according to the Liouville equation, whose derivation proceeds as follows:

dp

0= o (Liouville theorem) (9)
ap 5 Op _Op OH 0p OH 0Op 0Op
— “F.p. e 1
I 6Q+ P “o Top aq oq op o T UL (10)
ap 1 . . .
=3 + {Hy,p} + 5 Z Z{VU’ o} (Bilinearity of Poisson bracket) . (11)

i=1 j#i

The last term can be re-written by re-indexing and using the symmetry of V;; = Vj;:

1 oViy 9p _1 aVi. Op OV Vi
DHUTTETI I I EEPWIL N CEL I3 3 - L

i=1 j#£i i=1 j#i k=1 i=1 j£i dq; Opj gy
Thus, we find the Liouville equation
Vi . .
—|— {p,H1} = Z Z 9a. (Liouville’s equation) (13)
qi
J#i

The left-hand side includes the one-body effects, such as advection due to the P and the flows under U. The right-hand side
accounts for transfer of probability due to interactions. The Liouville equation is exact.

2 The BBGKY hierarchy

The Liouville equation (13) for the probability density over the 6 N-dimensional phase space contains way too much information.
We are interested in macroscopic quantities, like the average kinetic energy of the gas

N N
_ /1 P L, 1 2 L V2

where we have used the indistinguishability of the particles, and defined the 1-body probability density as the marginal
probability density

Harpist) /Hdnp Q.P;1) (15)

Observables like Eq. (14) are one-body properties, which only require p;, which is over a space of much lower dimension.
Thus, it is sensible to look for the evolution of p;.
Using the Liouville equation (13), we find

a'01:/Hdr p(Q,P;t) = /HdP {{Hl,p}jtzapj-zavj’“]. (16)

i>2 k] 0,

E@ :@
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Calculating each term individually, we have

6H1 8,0 8H1 (9p )
dr; - |+
@ /H { < 8Pl op1 Oqy 2

i>2

dq; Op;j op; 0qj

Because 0H1/0q; and OH;/0p; only depend on q; and pi, the integral over qs, qs, etc. and pa, ps, etc. passes through it,
and we have

(2. 20 ot 0]

(bzéﬁ;ﬁﬁ,éﬁ,ﬁﬁz{mmﬁ, (18)
da1

dq1 Op1  Opx
For part , we use the fact that 0H1/0q; doesn’t depend on p;, and 0H;/Jp; doesn’t depend on q; to write

OF /de Z{apj @ﬁ?ﬂ) —aaqj- @gj”)] =0, (19)

i>2

since the integral over a total derivative is zero (assuming there are no boundary terms, which is true for either periodic
boundary conditions or a normalizeable p in open boundary conditions!).
Term @, the interaction term, is also simplified by splitting the indices between j =1 and j > 1:

9% oV;
@) = / dr; { L : fk] (20)
g ,; Oaq1 ; op; ,;J Jq;

Term can be simplified using the indistinguishability of particles k # 1:

ap1 Jq ap1 O

where we have defined the 2-body probability density

p2(q1,d2, P1, P2;t) /dezp (Q.P;1) (22)

>3

Finally, term is zero for the same reason as term (19):
oV;
DR AICOW - HO%

j

i>2 j>2

>o. (23)

Thus, we find the overall 1-body evolution equation

Op2 5V12
3P1 0q; '

0
Bty = (V- 1) [ ara

(24)

This contains much less information than the Liouville equation (13). It is almost closed in p;, but has the annoying po-
dependence on the right-hand side. Intuitively, this is because the probability density of a single particle can’t be understood
without accounting for the joint probability density of it encountering another particle. Unfortunately, p2(q1, q2, p1, P2) #
p1(a1,p1)p1(qz, p2) since the particles are not independent. For example, for repulsive interactions, pa(q,q,p,p’) <
p1(q,p)p1(q, p’) since having one particle at location q makes it less likely to have another particle there.

To find the evolution of ps, we can make a similar calculation to Eqgs. (16)-(24). Sparing you the details, the final answer is

Ops OViz  Ops OVas
op1 Oa1  Ip2 0Oqq

aﬂz
ot

+ (pau 4 Vi) = (V= 2) [Lara| 52 (25)
The 2-body equation contains dependence on the 3-body density. Likewise, the evolution of the 3-body density will depend
on the 4-body density, and so on. This is the BBGKY hierarchy. Because we are only interested in macroscopic, few-body
obervables, we must truncate this hierarchy somewhere, using some physically-motivated approximation.
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3 The Boltzmann equation

Let’s define the number densities

fi(ai,p1,t) = Npi(qi1, p1;t) (26)
f2(d1,92,P1, P2, t) = N(N — 1)p2(qi, d2, P1, P2; t) (27)
N! 98

S IR R E3) IR 87t =T Ps IR ) [ S7t .
fs(di,- -, Qs P1, -5 Psy 1) (N_S)!p(ql Qs,P1s-- -, Psit) (28)

These are no longer probability densities. The normalization condition for f; is, for example,

/dnfl(ch,pl,t) =N. (29)

Now let’s write out the 2-body equation for fa(q1,qe, p1,p2) explicitly:

:  Ofs p1, Ofs p2 [Ofs OUL  Ofs 0U Ofs  0fa] OVia Ofs 0Viz  Ofs 0OVas
f2+7.7+7.777 — == = - | === - == — drgi. —2 .
oqi op1 Oa1  Op2 Oqo

. ) . (30
oqp m  Oqz m Op1 Oqi  Op2 0Oq op1  Op2 (30)

G G 3 -

where we have used the fact that 0Vi2/90qs = —0V12/0qs.

We will now use dimensional analysis to guess which terms from this equation are the most important. For a gas at room
temperature, there are a convenient series of scale separation that make this easy. (This is where the applicability of these
calculations to other many situations—e.g. astrophysics—breaks down, since long-range interactions and higher densities mess
things up.)

Air molecules at room temperature have typical velocities of v &~ 10?m/s and interaction radii of d ~ 1071%m. Thus, the
time it takes a collision to occur 7, =~ d/v =~ 10~ '2s is very small compared to, say, the time it takes a molecule to cross a box
U(q) of length 1m, 7y ~ L/v ~ 10~ 2s. The density of air is also very low: n = N/V ~ 10%6/m? < 1/d>. Thus, the distance
a particle typically travels between collisions, ¢\p or the “mean-free path”, is large compared to d. This can be estimated by
considering the volume fy\rmd? swept out by a particle traveling this distance, and comparing it to the typical volume one
must search before encountering a particle, V/N:

|4 1
KMFT('CZZ ~ N — Ivr & @ . (31)

This is given by /yr ~ 107%m. The mean-free time is then given by myr = fvr/v ~ 10~ 3m.
We have found three processes, each well-separated from the other in terms of length and time-scales:

Te<L<™vr K TU d << yr < Uy . (32)

These are summarized by the following table:

Process Length scale Time scale

Collisions d~ 10710 T. ~ 107125
Free motion
between collisions

Effects of U(q) ly ~1m v~ 10725

IvE & 10~ 5m TMF ~ 1085

The Boltzmann equation, which we will now derive, exploits these two separations of length and time scale.

Now let’s return to Eq. (30) and examine it term-by-term. All terms have dimension T-!N2L=C¢. Let V, U, and KE
indicate the energy scales of V(q), U(q), and p?/2m respectively. Also suppose that the system size is comparable to £y,
so that fo ~ (N/£3). Finally, define a new “length scale of interest” ¢ < {y, such that df2/0q; ~ fa/¢. We find the



3 THE BOLTZMANN EQUATION

approximate scaling of each term

N\?1 1
~ KE(=) >—
© (6‘(5]) ¢ mu (33)
1 /N\*1 U ¢
@ ~ %(zg)m ~ R < O (34)
1/N\? 1
® ~ val) (#5)
@ /V1 MY vl (N 1 Nd—3® < ® (36)
d E?] d Z%] mu é?]

We can thus eliminate term (2), since the gradients of the external potential are chosen to be significantly smaller than those
of fa (and the potential energy U is at most comparable with the kinetic energy). We can also, crucially, eliminate term
(4), since it is smaller than term (3) by a factor of nd> ~ 10~* < 1. Since (4) contains all the fs-dependence, we have thus
truncated the BBGKY hierarchy.

We are left with the new equation

e[l 28] e 00 p1_ 0

op1 op2 0q Oqu 5_37(12 m’ (37)

where the = sign should really be an ~ but we will (semi-phenomenologically) pretend the strict equality holds from now on.
Let’s simplify df2/0q; further. We can change the coordinates q1, g2 to g+ = (q1 + q2)/2 and q = q1 — q2, and note
that (suppressing the p dependence)
Ofs _, 00 0L O _,0h 0%

= , =22 ZI2 38
Oq; dqy  0q 0qs dqy  0Oq (38)

Since the gradient fo with respect to q is of the order 1/d while variations with respect to g are the inverse of a meso- or
macroscopic lengthscale (e.g. ~ 1/£), we can neglect the 9/dq terms, and approximate

0f, _of  of _ 05 oh B 0f p_0f (P M
oqr ~ oq’ dqz ~ 9q - dqr m + o2 m  dq \m m)’ (39)
Return to the 1-body equation (24), which in terms of f; and f, is given by
o 0fs OViz _ 0f1
g H) = [ dry2l2. = 2hr 4
g T UL /d *Bp1 Bar Ot |, (40)
In the steady state, Eqs. (37) and (39) gives us
[RA RIS "
op1 Op2 oq1 oq m m
of2 5f2] V12 / Ofs OViz / Of2 <P1 Pz)
— [dr,| 22 92| = [ar, 22 = [ar, 22 (P P2} 42
/ 2[3p1 op2 oqu 28pl Ooqu 25’(1 m m ( )

The first equality in Eq. (42) is obtained by noting that the second term is a total derivative in ps, which is integrated over.
Thus, the second equality of Eq. (42) allows us to replace the right-hand side of Eq. (40). Also defining p = ps — p1 so that
the integral is over the relative momentum of coordinate 2 in coordinate 1’s frame, we find

of
ot

1 0
=——/d3qd3pp-ﬁ(q17q1+q,p1,p1+p)- (43)
m dq

coll.

Keep in mind that we have made the replacement q = q; — q2 and p = p2 — p1.
[End of recitation 4]
Can we simplify the collision term (43) even more? Note that for any function A(q, p), we can write

0A(q,p . .
/d3pd3q p éq) = /d3pd2q¢ p| [A(QJ_ +pl',p) — AlqL —pﬁﬁp)} , (44)
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where ¢/ — co, p = p/|p|, and q, - p = 0. That is, we have decomposed the q space into a plane q; perpendicular to p, and
an axis parallel to p, which we have integrated over. We can do the same with Eq. (43) to find

of

5 = —/d3pd2qL p| [fz (a1, q1 — (qL +p¢'), p1,pP1 + P, t) — fo(ar, a1 — (9L — p¢'), p1, P1 + p,t)} . (45)

m

coll.

In principle, we must take £/ — oo since the limits of the q integral is infinity, but we don’t actually need to because fy only
varies with respect to q; — qo on a scale of d. Thus, as long as ¢/ > d, we are fine.

This result, and its relation to collision kinematics, is illustrated below. Working in a frame where p; = 0, our integral over
p results in the difference of two terms: the probability of the blue and black particles’ configuration, minus the probability of
the red and black particles’ configuration.

p

We can now also note that we can make the spatial coordinates in each term equal using “streaming”. (This is where the
talk of collisions and scattering really starts to make sense.) Because probability is constant along a trajectory, we can write

f2(a, a1 — (ar —pl'), p1,p1 + p.t) = fo(d),d) — (dL +5C), P}, P} + P, t) (46)

where two particles starting at q1 ,q1 — (g1 — p¢') with momenta p1, p1 + p end up at q}, q1 — (g, + p¢’) with momenta
pi, p; +p’. (You can check that we have enough degrees of freedom for some such qj, q’,, p}, and p’ to exist.) This
is illustrated below: Again, working in the frame where p; = 0, we have replace the probability of the red/black particle
configuration (now drawn with dashed borders) with the probability of the evolved system, at g}, q1 — (q1 + p¢') with new
momenta p, p1 + p’:

However, because fy doesn’t depend strongly on the center of mass q; + qa2, we can use g} ~ qi. In fact, we can also use
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q1 — (g1 — p') = qu, as long as ¢’ < ¢ (which is possible since d < ¢).! All in all, we may write

0
% :—/dgpdgcug[fz(QhOIl,pl,Pl+P»t)—fz(Q17Q1ap/1,P/1+P/,t)] (47)
t coll. m
= _/dBPQdZQL%[fQ(CI17Q17p1ap27t) —fz(ql,ql,p’l,pé,t)} ; (48)

for some p}, p’ = p5 — p} which are related to p; and p = ps — p; through the equations of motion, in a way that depends
on q; and #'. Note that we have changed coordinates back to ps = p + p1.

Finally, to turn this into a closed equation of fi, we make the molecular chaos assumption, that the particles are
uncorrelated. That is, we assume

f2(q1aq.1aplap2>t) ~ fl(qlaplat)fl(qlap27t) (49)
fo(a1, a1, P1, Py, t) = fi(qu, P, t) fi(dr, ph,t) - (50)

Crucially, we assume that particles are uncorrelated both pre-collision and post-collision, something that isn’t necessarily true.
Thus, we are left with the Boltzmann equation

of1

1
e +{f1,Hi} = o /dQQLd3P2|p1 — po[fi(ar, P1,t) fi(ar, Ph.t) — filar, p1,t) fi(ar, p2,t)] - (51)

J

This is finally a closed equation for f;. The right-hand side describes how collisions between particles co-located near q; with
“incidence vector” q transfer momentum from (p1,p2) to (P}, Ps), a process that occurs with a weight dq |p1 — pa|/m. The
final momenta (pf, p5) are deterministically related to q; and the initial momenta, and the dependence requires knowledge of
V. (Note that we could also make a variable change to the d®q, integral to re-write Eq. (51) in terms of scattering cross
sections. In this case, there is still an implicit relationship between (p/, p5) and (p1, p2) which is determined by the form of
the potential V.)

After all this hand-waving, you may not believe Eq. (51). If you like, you can also think of it as a phenomenological
equation: the simplest equation, to this order in f7, that describes the effect of collisions while also respecting the symmetries
of the system. Then, the scattering cross section and the relationship between the p) and the p; can be thought of as
“free parameters” constrained only by the symmetries of the dynamics. However, it is also true that the steps made in this
derivation can be justified more rigorously. In fact, mathematicians seem to have recently proven that Eq. (51) is a valid
description of the dynamics of dilute hard spheres.? With a physicist’s appeal to universality, we can comfortably extend this
to any dilute gas with short-ranged interactions.

In celebration of our newly closed equation (51), we will henceforth replace f; with f in our notation, understanding that
f always corresponds to the 1-body distribution.

4 The H-theorem

We started with time-reversible dynamics (Eq. (13)). Is the Boltzmann equation (51) time-reversible as well? The H-theorem
tells us that it is not.

Theorem 4.1: The H-theorem

If f(q,p,t) satisfies the Boltzmann equation (51), then dH/dt < 0, for

H(t) = / Badpf(a,p,t)In fla,p.1) . (52)

You will recognize the right-hand side to be proportional to the negative entropy of the system. Thus, the H-theorem tells
us that entropy always increases. Now, let’s go through the proof.

INote that, because the momenta change significantly during collisions, we couldn’t have just made the positions equal in Eq. (45). (This would
clearly result in the collision term being zero!) These approximations and substitutions basically amount to the fact that the momenta “teleport” a
significant distance during collision, which are themselves not spatially-resolved.

2Y. Deng et al., Long time derivation of the Boltzmann equation from hard sphere dynamics, arXiv:2408.07818 [math], July 2025.



THE H-THEOREM

Proof 4.1: Proof of H-theorem.

Use the shorthand notation | dBqd®p = fq . We can explicitly write the time evolution of H(¢) using the Boltzmann

equation as
dH of _ of 0 aof I
E a /%P at <1nf " 1) ; /(lvp at ! f a /01713 <{H1’ f} " at coll.) ! f (53)

—_——— ——

=D =2
where
oU of p 8f>
= Hy, f}1n :/ (-—- Inf=0 IBP 54
@= tmsns= | (G0 50 5a)nf=0 (5P (54
and
of
@ = / 9 g (55)
aQ,p ot coll.
:/ /d?’pdeEW [f(q,p’l)f(q,p’z)*f(q,pl)f(q,pz)] In f (a1, p1) - (56)
q9,P1
Note that for an arbitrary function A(p1, p2),
: . : . 1
/d3p1d3pzA(p1,pz) = /dSplddpzA(pz7p1) = /d3p1d5p25[14(p1,p2)+A(p2,p1)] : (57)

Thus, we can apply this symmetrization to @ to find, suppressing all g-dependence since everything occurs at the same
spatial coordinate,

@= [ PPl 00) - fo0swn)] 00 + [165)10) - S22 B0)] 00} (68)
= [ Rl ) 1)~ £ o)) 1 R F )] 59)

Now, it is useful to keep in mind that p} and p) are really functions of 5, P1, and ps. Moreover, this functional
relationship is invertible and has unit Jacobian. Recall also that |p} — p5| = |p1 — p2|- Then, we can use the identity
(for an invertible u(x))

du
/ dxF (u(x)) = m;ltij@F(“) (60)
to make an additional symmetrization
= W;{ [#o)7@) — £(2)£(P1)] 10 [ (1) (2] (61)
+ [£02) £ (1) — 105 F(B1)] [f(p’l)f(pé)]} , (62

where in the second term p; and ps are understood as functions of p, pj, and b. Thus, we find

0= [ PPl [0 ) - sa)se0)] [ 100 £00] - [FR0FER]] - (63

dt m
E@ E@

When f(ph) f(p}) > f(p2)/(p1), term @ is positive, but so is term (B). When f(p3)f(pl) < f(p2)f(p1), term @ is
negative, but so is term @ All in all, we see that dH/dt < 0.
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Thus the reversible microscopic dynamics exhibit an apparent macroscopic irreversibility. Two questions: (1) why is this
the case, and (2) how can the Boltzmann equation (51) still be an accurate description of the dynamics?

1. How is the Boltzmann equation irreversible? We have made many approximations to get to Eq. (51), but
not all of them manifestly violate time-reversibility. However, we can identify one culprit: in the molecular chaos
approximation (49)-(50), we have assumed that particles are just as uncorrelated before a collision as they are after. In
reversible dynamics, this isn’t possible.

2. How can an irreversible equation accurately describe reversible dynamics? The answer to this question
involves coarse-graining. While it is, in principle, possible for all the gas in a room to move to one side of the room,
understanding this process would require detailed knowledge of all the microscopic degrees of freedom and all of their
correlations. We are not interested in such a description, and it isn’t needed to describe the most probable macroscopic
behavior of the system.

Another more mathematical way to understand this is as follows: consider a system with many states, some more likely
than others. (E.g. some have multiple copies.) Imagine that it is possible to transition between any two states, and
that the dynamics of these transitions satisfy time-reversal symmetry.? In search of a lower-dimensional description of
our system, we may disregard some of the transitions. This in general ruins the time-reversal symmetry of the system.
However, if we eliminate the more unlikely transitions, the description will be accurate enough to describe the overall
behavior of the system. One way to “keep the most likely transitions” is to favor those which increase the degeneracy of
states. The result is that the entropy of the system increases, i.e. H < 0. This is, in principle, what we have done in our
derivation of the Boltzmann equation, although it isn’t so transparent.

4.1 Consequences: the local equilibrium distribution

Because H is monotonically decreasing, its steady state is constant. We can thus deduce the steady state of the system by
requiring H = 0. In fact, we can make the following equivalence:

H=0 < f(ai,p1)f(a,p2) = flai,p1)f(a,py) <  Inf(qi,p1)+1Inf(qi,p2) = Inf(qi,p)) +In f(ai,ps) - (64)

Because (p1,p2) and (p, p5) are the momenta before and after a collision, this implies that In f(q1, p1) + In f(q1, p2) is the
same value before and after collisions. Thus, In f(q, p) must be a linear combination of quantities that are conserved by the
collisions. We can identify 3 such quantities:

1. Particle number: 1+1=1+1
2. Momentum: p; + p2 = p} + pj

|2 12 = piI? + |ph)? .

We can thus write the “local equilibrium” form of f:

3. Kinetic energy: |p1|? + |p2

2
1%
fua(ap) = (@exp | -~ ata)-p - pla) (20 + U] (65)
We have exercised our freedom of choice of the q-dependent prefactors to write it this way. You can check that
O0fLEQ
=0. 66
ot coll. ( )

However, fLEQ # 0 in general: it must also have zero {H1, f}, which requires particular choices of v, a, 3.

Eq. (65) represents the “local equilibrium” reached on timescales ~ 7. Because momenta and kinetic energy are
exchanged in collisions, after a few collisions have occurred, their probability distribution is roughly the same across all
particles in a local region. Once this has occurred, the system undergoes a slower relaxation to global equilibrium. This time
period is governed by what we call the system’s “hydrodynamic” description.

Another way to justify this calculation is through a perturbation in the small parameter mvr /7. Recall that 7y is an
extrinsic timescale, describing the evolution of the system due to the external potential U. The one-body term {Hy, f} in 0 f
scales like 1/7y. Moreover, the collision term scales like 1/7yr. Thus we can define the non-dimensionalized operators

LIf] = {H1, f} (67)
Clf, 9] = Tmr / d*pd*q. [f(a,p)g(a,P) — f(a.p')g(a, )] (68)

3We would say, for states A and B with probabilities P(A) and P(B) and transition rates P(A — B) and P(B — A), that P(A)P(A — B) =
P(B)P(B — A).
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so that
or = i!J[f] + LC[f, f], soin steady state (69)
ot TU TMF
OF L0 —  eLlf]4Clffl=0, where = TME (70)
ot TU

We can then write the solution of the Boltzmann equation as

fla,p,t) = fOa,p.t) +efP(a,p.t) +2fP(a,p.t) +... (71)

where the terms are determined by equations like

C[f(o),f(o)] -0 (72)
LIFO1+C[f©, O] 4 c[f D, fO) = 0 (73)
(74)

The order-£° solution is f(©) = fLeEq, given in Eq. (65). We will examine the consequences of this perturbation scheme in the
next section. After making some definitions, we will look at how this Oth-order solution f(°) behaves in Sec. 5.2. Then in
Sec. 5.3, we will find an approximate solution for f() and investigate its behavior.

5 Hydrodynamics

5.1 Conserved quantities

The long-timescale evolution of the system is governed by what we call “slow fields”, fields which take a long time to relax
(7 > 7mr). In this system, it can be argued that the only such fields are the conserved quantities. These are given by the
particle density n, local velocity u, and local “comoving” kinetic energy ¢, defined as follows:

n(q,t) = / *pf(a,p.1) (75)
/d3p %f(q,p,t) (76)

fla,pt). (77)

u<q7 t) n(q7 t)

e(q,t) = n(; ) /dgp 7;‘:; —u(q,t)

We also define the local averaging operation ( - ): for an observable O(q, p,t), we write

(O(a,p. 1)) = / *pO(q, p.t) (a0, . 1) (78)

1
n(q, t)
Thus, n(q,t) = n(q,t)(1), u(q,t) = n(q,t)(p/m), and e(q,t) = n(q, t)(F[u - p/2m|?).

The dynamics of these quantities are relatively simple because they are conserved by collisions. As a consequence, we have

the following lemma:

Lemma 5.1: Collision integral of conserved quantities is zero
For a quantity x(q, p) which is conserved during a collision, i.e.
X(4, 1, t) + x(d, P2, t) = X(q, P, t) + X(q, P, £) (79)

its flux due to collisions is zero:

=0. (80)

coll.

0
Jy(aq,t) = /d?’px(q,p,t)a%

10



5 HYDRODYNAMICS

We will skip the proof, which is straightforward algebra. As a consequence, we can compute the evolution of y-density:

I (n{x)) = i[/d?’px(q,p,t)f(%pi)} = /d3p[x8tf+f+8tx

=/d3p X{Hl,f}+><% +f3tx} =/d3p[x{H1,f}+f8tx]
L coll.

. [ OU Of p Of
— d —_— —— — —_— —
—/d p_xaq ap  Xm anFfatX}

:/dsp B ,_.(Xf)+fz.x+f8tx} (IBP) .

As a result, we find

=~ (o)) () )

Now we will use Eq. (85) to find the evolution of n, u, and e.

5.1.1  Ewvolution of n(q,t)
Letting x = 1, Eq. (85) becomes

on = —0, (nu@) .
From now on, repeated greek indices are summed over.

5.1.2  Ewvolution of u(q,t)

Letting x = p/m so that (x) = u, Eq. (85) becomes

1 n
Oi(nta) = = —505 (n{paps)) — —0aU

1 n
= ndug +ua On = _Eaﬁpaﬁ — ua0g(nug) — nugdaug — EﬁaU
=—0g(nug)

1 1
= Oiuq = ———03PFPap — ug0laug — —0,U .
tU P eb ugopu m

We have defined

Defining the material derivative
Dy A(q,t) = LA+ ugdpA ,
we find

1 1
Diug = ——— 93P — —0,U .
v nm A A m

(81)
(82)
(83)

(84)

(86)

(93)

This is just Newton’s ma = F' law written in fluid form. The left is the acceleration, and the right is the force due to internal

and external energy, respectively.

11



5 HYDRODYNAMICS

5.1.83 Ewvolution of €(q,t)

Finally, use Eq. (85) with y = %‘u - %|2 so that (x) =€, to write
6t ('I’LE) = nate +e€ (9t’l’L (94‘)
N
=—0a(nua)
= —04 {n<pam (]?,3 - u5> <pﬁ — u5> >] —nU (pa/m — ua) —|—n<pam<u5 — p’8>3au5> —nm <]Da — ua> Orlig,
m 2 \m m ———— m m m
=0 T
(95)
= _ _ Pa _ _bs _bs
= —0aha — Ou(nuge) + nm<<m ua> (uB m)aauﬁ> + nm<ua (ug m) 6au5> (96)
=0
= —0aha — 0o (nune) — Papdaug (97)

where we have defined

() ()3 )
This implies that

noie = —O0aha — NUa0n€ — Poglag (99)

— Die = —% [Oaha + Papuag] - (100)

We have also defined the rate of strain tensor (using the symmetry of P, s and the fact that o and 8 are summed-over dummy
indices)

Uap = = (Oaup + Oua) - (101)

DN =

Egs. (86), (93), and (100) thus constitute the hydrodynamic description of our system. Now, we will study their steady-state
solutions.

[END OF RECITATION 5]

Let’s repeat the hydrodynamic equations (86), (93), and (100) for clarity:

Din = —ndyuq (102)
1

Dy(mite) = =05 Pag = Jal (103)
1

Dt€ = _ﬁ [aaha + Paﬁuaﬁ} ) (104)

where we recall the definition of the hydrodynamic fields:

it = () = (B2 ) (2 w)). (105)
ol (o) (o)) () () (o)) o

with averages computed using the formula in Eq. (78), and the material derivative

DA = 0,A+ ugdsA . (107)

5.2 Zeroth-order hydrodynamics

Recall that, using the local equilibrium assumption (which hinged on the separation of collision timescale from the other
timescales), we found an approximate solution to the Boltzmann equation, given in Eq. (65). Let’s now assume that f(q, p,t)

12



5 HYDRODYNAMICS

takes on this solution, and find out the resulting behavior of the hydrodynamic fields. With proper normalization, this
“zeroeth-order solution” (denoted by superscripts (?)) is written as

n(q,t) o [_ lp —mu(q, t)lz]
[2rmkpT(q, )] 2mkpT(q.t) |’

f(a,p,t) = (108)

where indeed [ d®*pf(®) =n and (p/m)(® = u as we have written them.
This is a Gaussian distribution over p with mean y,(q,t) = mu,(q,t) and variance o(q,t)?> = mkgT(q,t). This makes
calculation of various correlations between the components p, relatively easy. For instance,

(0)
(0) _ Pa ps _ _ lp—nl?/20°
P.g (q,1) mn<(m ua><m u5>> (@02 3/2/m2 — pa)(pg — pple” (109)
|x|%/20 2
o n (& - n 2

which is the ideal gas law. Likewise, we can note that
e(q,t) = Etr Pys(a,t) = €Y(q,t)= gk/’BT (111)
and moreover
h(aO) =0 (112)

because odd moments of p, — mu, are zero. Thus, we find zeroth-order hydrodynamic equations

Din = —ndyug (113)

mDiug = —0,U — lB,JZ(nkBT) (114)
n

Die = —kTOnuq . (115)

However, this description has a few deficiencies. First, it describes isentropic dynamics (as you showed in the pset), and
thus can’t describe a system that increases in entropy towards equilibrium. Second, none of the conserved quantities will relax
to equilibrium. (I skip this calculation, which is given in lecture 11 of Mehran Kardar’s ocw notes.)

5.3 First-order hydrodynamics

It is clear that we have to go beyond zeroth order. Recall our perturbative calculation, which we started in Eqs. (71)-(74). To
first order in & = 7yr /7y, we must now solve

ClF@, fO] + c[f D, fO) 4 £[£O] . (116)
To make this calculation, we will define
Co = % — Ugy (117)
so that
(0) o L o mcqyCq
fa,t) = D TV exp( 2kBT> (118)
and
1 0
=D 0O — — 0 U— . 11
L ¢ + a0, ma Uaca (119)

Note that the material derivative obeys the product rule

Dy[AB] = AD,B + BD, A . (120)
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5 HYDRODYNAMICS

Because £ is O(¢) relative to C, we can assume all the hydrodynamic fields in f(®) obey their Oth-order hydrodynamic
equations (113)-(115). Then, we find

Din 3D, T m(Diuy)co CoCa DT
D, 0 — Zt° p(0) _ 2t £(0) (0) (0) 121
tf - f 5T Y+ T Y+ TE / (121)
D, f© Ca 1 Mcaca0gus
= —UqUq ala — (e —0a(nkpT)| — 122
70 O, + Ot kBT8U+n8 (nkgT) SenT (122)
0U  Oan  0.T  mca0scg
_ Yalt 123
“\ogT "0 VT T ket (123)
Similarly, 0, f(©) is given by
Do f© _ 80[771 B §8QT n m(dacg)cg  megepdyT (124)
f(O) T on 2 T kgT 2kpT?
and finally
1 0 mc
] (1) B 125
7O e, ! kT (125)
Combining these, we find
L[fO] B me? 5 €0 0aT B mc20qCo n MCaCa04C3 (126)
f(O) B 2kgT 2 T 3kpgT kT
mec? 5\ ca0,T m 1
= — o) €303 — =20y | Ca 127
<2kBT 2) T ksl (C b9 3¢ )c (127)
mec? 5\ 0,1 m 1,
_ _9 s — =%60s )tag . 128
<2kBT 2) T ksl (C @3¢ B)“ s (128)
Thus, Eq. (116) becomes
2 5\ ca0sT m 1
0=_C[+O 1 (1) 4(0) O 2% s — —0us s . 129

Let’s also recall the expression for the collision integrals (where we omit all g-dependence):

Clr @, fOT+clf W, f) = / d*pd*q. [f(“’(p)f“)(f)) = O YD)+ P ) fOB) - O ) O (f)’)] . (130)
Gy _) 3 ey

Physically, this describes the flux of collisions between the two fields f(°) and its correction f1). C[f(©, fM)] describes
how collisions between f(© at momentum p and f(!) at all other momenta p transfer these momenta to p’, p’. Likewise,
Clf N (0)] describes how collisions between f(1) at momentum p with f(© at all other momenta p transfer these momenta
to p/, p’. Note that the third and term can be written as

®= /d‘”’f)dquf(”(q,p,t)f(o)(q7f)7t) = fM(a,p,1) . (131)
Note also that we can enforce the normalization condition
n(q,t) = /dgpf(q7p7t) = /dsp[f(o)(q,p,t) +efP(a,p,1) +(’)(52)] = n(q, p, ) +6/d3pf(”(q,p,t) +0(e%) (132)
= 0= /d?’pf(”(q,p,t) (133)
to find that the first term is zero:

®-= / Ppda. O )N (B) = 1O (p) / PBpd2a, fVB) = 0. (134)
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5 HYDRODYNAMICS

Through a more hand-wavey argument, we can also rationalize that because the 2nd and 4th term also integrate over the
argument of (1), they should also be zero

@ @=~o0. (135)
(This is more true when, for instance, the interactions are weaker.) Thus, we can approximate
O fO el 1O = @ = fP(ap.t) (136)
5\ Ca0aT m 1
0= f) ¢ (0) _ ) ara s — =28, Bl - 137
= 0=f"(a,p,t)+ f %T 5) 7 T\~ 3¢ % tas (137)
Thus, we find the 1st-order correction to the density
1) mc? 5
(1 A0 Y _ %8 2 _ (e 0 InT 1
f (q7 P, ) f (q7 P, ) |:kBT (Cozcﬂ 3 & Uap 2]€BT 9 Caacx n ( 38)
so that
Fapt) = FO(qp i1 —e| - (cnes — 22862 Yy — me” 5\, T +0(2) (139)
q, P, - q, P, k T aCp 3 af 2I€BT 2 ala
(0) (q7 ) _ mcq (q7 P, t)ca (q7 b, t) 140
Foap ) = o T, O eXp( 2%kpT(q. 1) (140)

where ¢, (q, P, t) = pa/m — ua(q,t).
Let’s clean up our notation by partially changing variables to ¢ = p/m — u (while keeping in mind ¢’s hidden g-dependence)

and changing from the temperature to the “variance” v(q,t) = kgT(q,t)/m, so that

3/2 2
o ~ om PR mca<q,p,t>ca<q,p,t>> __nlat) (_ )
fPaet = “[mmq, tJ ) p( ksT(@n) ) proanp? P\ uign) MY
(1) 5a 2

We also define the 1st-order average

(0)
(O(q,c,t))V = ! /dSCf(l)(q,c,t)O(q,c,t) = <O{<ca0g - 50‘;02) Yap _ (62 - Z)caa 1nv]> (143)

n(q,t) v 20
= (0) = (0)Y +(0)D + O(?) . (144)

We can then use Wick’s theorem to calculate the 1st-order correction to the momentum:

@ 2 (0)
Pa _ _ 6"//3 2\UB _ (C §
<m > = <(ca + Uq) [(ch 3 ¢ ) ” (21; 2)07&, lnv] > (145)

5 2 5 (0)

= <ua (cﬂ,cﬁ - gﬁ(?) U’Uﬂ + (;v - 2)6(}0787 1nv> (146)
0y8 | Us L 2 9
= 2657 — ?6 T + %(5047(3 + 2)’0 — § . 2’1}(5&7 8»7 Inv=20 (147)
and the pressure:
5 2 5 0)
P(ﬂ) = nm{cqcs) V) = nm< — caCp |:(C~/C,\ - ;)‘02> % - (;} - 2)6737 lnv} > (148)
5 (0)
= nm< — CaCg (cyc,\ - g)’\CZ) uz>\> (149)
1)
- _nm% <v2 (Sapdyn + 0ands + 5(”567) - %%2(3 + 2)%) (150)
2 604B

= —nmu [Quag — g‘saﬁuw} = —anBT[uag — Tuw} (151)
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5 HYDRODYNAMICS

and the energy:
m 1
e = 5<caca>(1) = Etr P(ilﬁ) =0

and finally the heat flux:

nm nm 5 ©
hgl) _ . <cac2>(1) = —2<Ca02 (2 — 2)0767 lnv>>
v

nmud,v [ 5nk%T0,T
= 35— 5 5] 60y = —0 LT
4 K 2 m

In summary, we see that the hydrodynamic equations (86), (93), and (100) become at first order
Din = —ndyug
1 1
Di(mugy) = —585 {nkBT(éag — 2e(uap — 35a5uw))] — 0, U
1 [ 5 (nk%TaaT

DtG = E 5580(

m

In the interest of time, we stopped around here.

1
> — nkBT((SaB — 2e(Up — 36aguw)) uag] )

(152)

(153)
(154)

(155)

(156)

(157)

(158)
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